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Workshop Context and Objectives

The U.S. Department of Energy (DOE) continues to actively pursue its goal of transferring
to the petroleum industry critical information about technologies currently being applied in
its Field Demonstration Program and other projects. DOE and BDM Oklahoma, with the
aid of the Petroleum Technology Transfer Council, are teaming to provide industry with
both a fresh perspective on technology use in these projects and a wide spectrum of
practical applications of specific technologies. The Class Program field demonstration
projects were selected to form the “core” of projects from which to draw for this practically
oriented technology transfer effort. The objectives of this activity are to (1) identify
technology advances and usable products demonstrated in Class and other program
projects, (2) organize a series of workshops focused on technologies of significant interest
and utility to industry, and (3) produce a published volume on each technology addressed
in the workshop series. These workshops and their accompanying peer-reviewed volumes
will not be technically or academically oriented treatments of the technologies, but “here’s
how we did it” and “here’s how it worked” treatments in a case history context.

Selection Of Workshop/Publication Technologies

Two primary criteria were considered in selecting workshop topics and their order of
presentation. First, technologies were considered that are playing important roles and are
producing results in Class and related program projects. Second, technology areas were
favored that have been recommended for research, development, and technology transfer
by various recent surveys (both DOE-funded and non-DOE-funded and performed by both
research-oriented and practical, industry-oriented organizations). Technologies identified
jointly in both these considerations include wireline-log-related, seismic-related, and
directional-drilling-related technologies.

The logistical feasibility of holding workshops for each of these technical areas was also
considered, i.e., whether the application of the technology has proceeded sufficiently in
program projects to warrant discussions of success or failure and overall project impact.
Applying this criterion resulted in selection of wireline-log-related technologies as a first
priority for treatment in this workshop and publication series.

Structure of the Advanced Wireline Logging Workshop and
Publication

In Class Program projects, three categories of wireline log applications have contributed
substantially to building accurate reservoir characterization models for implementation of
improved recovery techniques:

USE OF ADVANCED WIRELINE TOOLS - Modern and newly developed tools
such as nuclear magnetic resonance, pulsed acoustic, and array induction tools have
likewise contributed to a better understanding of subsurface reservoirs in Class
projects, particularly to a better knowledge of fluid distribution in the reservoir.

USE OF BOREHOLE IMAGING LOGS - Numerous projects have used borehole
imaging logs to describe such diverse properties as lithologies, saturations in thin
beds, sedimentary structures and reservoir architecture, and natural fracture
orientation, aperture, and fluid content. Knowledge of the reservoir gained from these
logs has contributed substantially to support reservoir modeling in several projects.

ROCK TYPING USING CONVENTIONAL LOGS - These approaches involving
correlation of rock properties and fluid transmissibility properties to single or multiple
wireline log response have enabled more accurate estimation of important reservoir



performance-related properties on a fieldwide scale in some Class projects. This
capability has resulted in a much more complete and less uncertain description of the
reservoir on which to base recovery process implementation than would have been
otherwise possible.

Primary objectives of the logging workshop are to:

Bring out the decision making process that led to selection of the technology for use
Convey the methodology for applying or implementing the technology

Discuss technological successes and problems encountered

Estimate the overall cost effectiveness of the technology

The workshop features an afternoon session with a panel discussion format at which
attendees can gain additional insights into the technologies discussed and ask specific
questions about technology applications in the projects represented. Some additional
objectives of the panel-discussion session are to further promote discussion of the practical
decision making process in technology selection/implementation, emphasize general
features about specific logging technologies that may not have become evident in the
morning presentations, and address region-specific matters of technology applicability. The
panel will be composed of presenters from the morning session and representatives of
major logging companies and will be guided by facilitators familiar with logging
technologies.

The published logging technology volume will be available within 12 months of the date of
this workshop. This peer-reviewed volume will summarize the use of logging technologies
in projects presenting at both the November, 1997 and January, 1998 logging technology
workshops. ‘It will also contain overviews of the technologies written and edited by
technology experts and will have the same practical-applications focus as the workshops
(panel discussion results at both workshops will be included in the volume). The volume
will also contain information on the use of logging technologies in Field Demonstration
Program projects other than those presented at the workshops. The volume will include
material on newly developing advancements in the technologies that are still in the research
stage as well, particularly on research and development activities being supported by DOE.



Overview of the Class Program

Philosophy and Context of the Class Program

The U.S. Department of Energy (DOE) has developed a coordinated strategic plan for all
oil technology, natural gas supply, and related environmental research, development, and
demonstration program activities. Individual program drivers stem from defined Federal
Government roles to maintain reliable domestic energy supplies at reasonable costs;
increase the value of Federal lands and U.S. Treasury revenues by maximizing production;
provide science and technology leadership; enhance global market opportunities for U.S.
energy technologies; and serve as a catalyst for industry, State, and other Federal agency
partnerships. In this context, DOE’s primary mission in the National Oil Program is to
maximize the recovery of oil from known domestic reservoirs in an economically and
environmentally sound manner, preserve access to this resource (i.e. to delay well and
reservoir abandonments), and maintain U.S. competitiveness in the global marketplace.

Realizing that domestic production was declining rapidly and that huge volumes of oil were
being abandoned in domestic reservoirs because of uneconomic production techniques,
DOE initiated the Oil Recovery Field Demonstration Program in 1992. This program is one
of the critical elements of the Oil Program necessary to move improved oil recovery (IOR)
technology from concept through research, pilot-scale experiments, and full-scale field
demonstrations to industry acceptance and commercialization. Both successes and failures
of the field demonstrations provide focus to concurrent research programs. Elements of the
field demonstrations that are suitable for broad industry application are communicated to the
industry through the Oil Program’s technology transfer effort.

Specific goals and objectives of the Field Demonstration Program include:
(1) Extend the economic production of domestic fields by:

e Slowing the rate of well abandonments
e Preserving industry infrastructure (including facilities, wells, operating units,
data, and expertise)
(2) Increase ultimate recovery in known fields by demonstrating:

e Improved methods of reservoir characterization (both rocks and fluids)
e Advanced oil recovery and production technologies
e Advanced environmental compliance technologies
e Improved reservoir management techniques
(3) Broaden information exchange and technology application among stakeholders by:

e Expanding participation in DOE projects to include all industry sectors

e Increasing third-party participation and interaction throughout the life of DOE-
sponsored projects

e Making technology transfer products user friendly

DOE is sharing with industry the cost of field demonstration projects in its Class Program.
Class Program objectives focus on employing field demonstrations and intense technology
transfer to bring newly developing technologies and ideas as well as innovative applications
of proven technologies to rapid, practical, and widespread use. A primary emphasis is on
state-of-the-art applications of promising and genuinely new tools and techniques that
require externally funded trials to discover and develop the best application techniques for
both technical and economic success. A second major emphasis is on innovative



applications of existing technologies (i.e., applications of underutilized but cost-effective
technologies).

Characteristics of the Class Program

A powerful and unique feature of the Class Program is that reservoirs with common
geological origins have been grouped together for treatment under the program. The
premise underlying the groupings is that geologically similar reservoirs will, to some
extent, have similar reservoir characteristics and production problems. Therefore, this
grouping system provides an analog basis for quickly applying successfully demonstrated
technologies and methodologies to other reservoirs in the same group. These geologically
based reservoir groupings were established by a study of reservoir information stored in
DOE’s Total Oil Recovery Information System (TORIS) database. The TORIS database
contains data on more than 2,500 domestic oil reservoirs representing two-thirds of the
known domestic oil resource, or about 360 billion bbl of original oil in place. Twenty-two
distinct, depositionally defined reservoir groups (sixteen siliciclastic and six carbonate) are
recognized in the TORIS database (see FIGURES 1 and 2).

As operators successfully demonstrate existing and new reservoir characterization and
improved recovery technologies in field projects, other operators can confidently take
advantage of the technologies in projects in analogous reservoirs. The greater the similarity
the better; reservoirs in the same basin, or even within the same play (where deposits are
most likely to be exposed to similar geologic conditions throughout their history), have a
greater chance of being predictably similar. Of course, DOE recognizes the fact that every
reservoir is unique in certain respects, and that no analogy will be perfect.

A second and perhaps more important feature of the reservoir groupings in the Class
program, is that the reservoir groups have been prioritized by both the size of their
remaining recoverable resource and the likelihood of reservoir abandonment in the near
future. The Class Program consists of a series of industry cost-shared projects in these
prioritized reservoir classes. By adhering to these priorities, those reservoir classes are
being addressed first under the Class Program that will have the greatest impact on DOE’s
primary mission. Our country has no other mechanism to evaluate and coordinate such
resource-directed priorities for technology development and demonstration projects. This is
a unique contribution of this government-sponsored program, and a key reason for its
existence.

Another unique aspect of the Class Program is its strong emphasis on technology transfer,
which promotes widespread and rapid dissemination of the successes achieved in Class
projects. Outside the Class program, successful technological developments achieved by
individual oil companies or company coalitions are generally carefully guarded for the
purposes of maintaining a competitive advantage. Industry, acting on its own, has no
effective incentive to maximize technology transfer. By making information available to the
entire industry, the government’s Class Program has maximum impact on the goals and
objectives of the Field Demonstration Program.

Cost-shared projects of the Class Program also serve as a source of risk abatement for final
stage development of new technologies and novel applications of current technologies that
might not attract funding from a risk averse industry. Outside the Class Program, although
risk sharing is common in exploration ventures, there are few good mechanisms or
incentives in place to persuade coalitions of small or large operators to duplicate these kinds
of research ventures in mature production environments.



Current Class Program Projects

Cooperative agreements are in place for cost-shared projects in the three highest priority
reservoir classes. Projects are cost-shared by DOE up to 50% of the total project cost.
Nearly 30 projects representing combined industry and government investments in excess
of $250 million are now in place. These first three reservoir classes contain more than half
(126 billion bbl) of the 246 billion bbl of oil remaining in reservoirs listed in the TORIS
database. Projects address either near-term (within five years) program goals of preserving
access to reservoirs with high potential for increased productivity which are rapidly
approaching their economic limit or mid-term (within ten years) program goals of
developing and testing the best advanced technologies through an integrated
multidisciplinary approach. Each project is divided into two budget periods. Projects that
prove technical and economic feasibility during the first budget period are subsequently
funded for field demonstration during the second budget period.

CLASS 1 Projects - Eleven projects (four mid-term and seven near-term) in Fluvial-
Dominated Deltaic reservoirs were selected and awarded in 1992 and 1993(see FIGURE
3). Four projects have been completed.

CLASS II Projects - Nine projects (three mid-term and six near-term) in Shallow Shelf
Carbonate reservoirs were selected and awarded in 1993 (see FIGURE 4).

Note that Class II is made up of shallow shelf carbonates characterized by both open and
restricted circulation (see FIGURE 2). Although each of these subtypes has distinctive
biological, sedimentological, and chemical characteristics, the two types are often
gradational and it is frequently difficult to assign a given reservoir to one or the other type
with confidence. The TORIS database lists about 64% of Class II reservoirs as of open
circulation origin, and about 34% as restricted. The salient characteristic that both
depositional environments share is rapid lateral changes in sediment character and
associated energy levels. Class II reservoirs are among the most highly heterogeneous of
carbonate reservoirs.

CLASS III Projects - Four near-term and five mid-term projects in Slope and Basin
Clastic reservoirs were awarded in 1995. All of these projects remain active (see FIGURE
5).

Like the reservoirs of Class II, reservoirs of Class III are of more than one depositional
type, being made up of both slope-basin and deep-basin clastic deposits (see FIGURE 1).
Close similarities in the nature of deposits in these two groups compared to other clastic
depositional groups justify lumping the two for treatment under the Class Program.

ADVANCED CLASS WORK Projects - This special series of projects deals with
field-based reservoir characterization and recovery process projects aimed at refining
advanced technologies that were demonstrated or identified in Class demonstration
projects. In addition, technologies shown to be promising in laboratory research and
development efforts (improved recovery methods and reservoir characterization
technologies) were selected for demonstration under Advanced Class activities. The
Advanced Class Work Program currently has three projects underway.

This workshop on logging technologies provides only a small sampling of the vast amount
of practical information on technology implementation, reservoir characterization, and
reservoir management that is available from Class Program projects. A good source of
overview information is the Class Project Summary Sheets, a volume containing brief
descriptions and status information on all of the projects, published by DOE. Similar
overview information can be downloaded from the National Petroleum Technology Office
website homepage (www.npto.doe.gov) in the form of the CLEVER (CLass EValuation
Executive Report) database. The Class Act, a DOE-sponsored newsletter, conveys



highlight information on important project accomplishments and upcoming technology
transfer events such as workshops, publications, and presentations. This and other DOE
newsletters (EYE on Environment and Inside Tech Transfer) are also available at the
website. Detailed project technical information may be obtained from interim project reports
published by DOE and from numerous publications in professional journals. To obtain
DOE publications relating to Class projects or for further information please contact:

Herb Tiedemann Phone: (918) 699-2000
National Petroleum Technology Office Fax: (918) 699-2005

Williams Center Tower One E-mail: htiedema@npto.doe.gov
One West Third Street, Suite 1400 Website: www.npto.doe.gov

Tulsa, Oklahoma 74103
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Acoustic logging to detect hydrocarbons DE-FC22-95BC14934

ACOUSTIC LOGGING TO DETECT HYDROCARBONS THROUGH
CASING - DOE CLASS III WILMINGTON WATERFLOOD PROJECT

Daniel Moos'

Theoretical relationships, confirmed by laboratory and field data, suggest that
hydrocarbon-bearing rocks in situ can be differentiated from rocks containing brines using
sonic velocity measurements. A project to test this technique has been undertaken in the
Wilmington Field, California, with co-funding from the Department of Energy (DOE
cooperative agreement no. DE-FC22-95BC14934). This paper summarizes the principal
results and the experience gained during the DOE project.

As part of this work dipole and monopole acoustic data were obtained in a number
of wells in the field. In addition, laboratory measurements of the physical properties of core
samples were carried out. Rock-log models for the relationships between porosity and
velocity and between hydrocarbon saturation and compressional and shear-wave seismic
velocity were developed.

The principal results were as follows:

e It was extremely difficult to obtain reliable dipole logs through the old, cased

wells logged in the Wilmington field, some of which were drilled in the 1940’s.
Data was successfully acquired in newer (less than 20 years old) wells.

e Where data were obtained, sands with producible hydrocarbons could be
discriminated from those which were watered out.

e Shear-wave seismic velocity could be used to measure porosity using a
theoretical relationship appropriate for unconsolidated materials.

e Models developed for this work were applied to acoustic data recorded through
casing from a field in South America, and successfully detected previously
untested hydrocarbons. In addition, the logs revealed one possible cause of
sharply curtailed production from previously productive intervals - those
intervals which were initially revealed to contain liquid hydrocarbons are now

revealed to contain free gas.

" GEOMECHANICS INTERNATIONAL AND STANFORD UNIVERSITY DEPARTMENT OF
GEOPHYSICS
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Acoustic logging to detect hydrocarbons DE-FC22-95BC14934

e Porosity measured using neutron activation logs recorded in one well in the
Wilmington field agreed with the porosity derived from the shear-wave (dipole)
acoustic data.

As a result of this work it is clear that acoustic methods are reliable means of
detecting bypassed oil. These are appropriate for application within cased holes in clastic
reservoirs, even where competing technologies (for example, neutron activation logging)
cannot be used. However, careful consideration of reservoir rock properties should be

made prior to attempting to log target holes, to determine if the data can be acquired.

Published papers / expanded abstracts:
Moos, D., S. Hara, C. Phillips, A. Hooks, and K. Tagbor, 1995. Field test of acoustic logs for

measuring porosity and oil saturation in a mature waterflood in the Wilmington Field, CA,
Proc. SPE Western Regional Meeting, March 8-10, 1995, pp. 395-408.

Moos, D., F.S. Walker, and D.D. Clarke, 1996. Sonic Logging to Detect Bypassed Hydrocarbons in
the Wilmington Field, CA, in Clark, D.D., Otott, G.E., and Phillips, C.C. (eds.), Old Oil
Fields and New Life: A Visit to the Giants of the Los Angeles Basin, AAPG/SPE,
Bakersfield, CA, pp. 57-65.

Moos, D., and J. Dvorkin, 1996. Sonic logging through casing for porosity and fluid characterization
in the Wilmington Field, CA, Sixty-Sixth SEG International Exposition and Annual Meeting,
Nov. 12, 1996, pp. 134-137.

Moos, D., J. Dvorkin, and A. Hooks, 1997. Application of Theoretically Derived Rock Physics
Relationships for Clastic Rocks to Log Data - Example from the Wilmington Field, CA,
Geophys. Res. Lett. 24(3), pp. 329-332.

Chang, C., D. Moos, M. D. Zoback, 1997. Anelasticity and dispersion in dry unconsolidated sands,
Int. J. Rock Mech. & Min. Sci. 34:3-4, Paper No. 048.
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Saturation from Sonic Logging
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Sonic Porosity in Unconsolidated Clastic Rocks
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Acoustic Logs Detect Bypassed Oil and
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Acoustic logging to detect hydrocarbons DE-FC22-95BC14934

Contact names and addresses:

World Wide Web Project Home Page:
http://pangea.stanford.edu/~moos/DOE_home.html

For information regarding dipole logging technology:
Andrew Hooks
MPI
15800 West Hardy Rd.
Suite 580
Houston, TX 77060
(713)447-0300, (713)447-2999 (fax)
email: ajhooks @magneticpulse.com

For information regarding oil production and project management:
Scott Walker
TOPKO
301 E. Ocean Blvd.
Long Beach, CA 90801
(301)436-9918

For information regarding overall management and the Wilmington Field:
Don Clarke
City of Long Beach Department of Oil Properties
211 E. Ocean Blvd., Suite 500
Long Beach, CA 90802
(301)570-3915

For information regarding rock/log models and log analysis:
Daniel Moos

Department of Geophysics GeoMechanics International
Stanford University 2250 Park Blvd.

Stanford, CA 94305-2215 Palo Alto, CA 94303
(650)723-3464, (650)725-7344 (fax) (650)322-6506, (650)322-6508 (fax)
email: moos @pangea.stanford.edu email: moos@ geomi.com
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APPLICATION OF BOREHOLE IMAGING LOGS IN THE GREEN RIVER WATER
FLOOD DEMONSTRATION PROJECT

Dennis L. Nielson and Susan J. Lutz
Energy & Geoscience Institute
University of Utah

John D. Lomax
Lomax Energy LLC
Laguna Beach, California

This paper is a summary of the findings and decision processes surrounding the application and
interpretation of borehole imaging logs in the Green River Water Flood Demonstration Project
that was part of DOE’s Class 1 demonstration project that dealt with enhanced recovery methods
in fluvial-deltaic environments. This project was awarded to Lomax Exploration Co., the
University of Utah Research Institute and the University of Utah. Lomax has since been acquired
by Inland Exploration Co., and the University of Utah Research Institute has become the Energy
& Geoscience Institute at the University of Utah.

In April, 1981, a discovery well, the Federal #1-35, was drilled in the Monument Butte field in
Utah (Fig. 1) and completed in the Douglas Creek Member of the Green River Formation.
Development proceeded on 40-acre spacing, concentrating principally on the "D" Sandstone
(Lomax terminology). Primary production was anticipated to recover 309,000 STB of oil, or
5.5% of the 5.67 million STB of the oil in place. Using primary methods, field production
declined to 45 bbl/day. In order to improve the recovery of oil from this reservoir, Lomax
Exploration Co. initiated a water flood. This technique had never been attempted in the vicinity of
the Monument Butte field, and reservoir engineering studies had predicted the procedure would
not be successful based upon reservoir heterogeneity, low reservoir permeability, the high paraffin
content of the crude oil and the low energy of the reservoir.

In 1987, production of the field had declined to 30 bbl/day as the flood was initiated. The flood
proved successful and, as of November, 1991, production at Monument Butte had increased to
330 bbl/day. As a result of this water flood, estimated ultimate recoverable reserves of the "D"
sandstone reservoir alone have increased from 300,000 bbl to over 1.2 million bbl, and recovery
has increased from 5% to an estimated 20% of the oil in place. The water flood has since then
expanded to include other sandstone reservoirs in the lower portion of the Green River
Formation.

The Uinta Basin developed in an asymmetric fashion which has, in general, controlled the style of
sedimentation. High-angle normal faults form the northern boundary of the basin adjacent to the
Uinta Mountains. This faulting resulted in a source area of relatively high relief adjacent to an
actively subsiding part of the basin and the deposition of a relatively coarse-grained stratigraphic
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section. The southern part of the basin was a zone of low relief with sediment source areas in the
Uncompahgre uplift to the south. This resulted in a relatively fine-grained sedimentary succession
of fine-grained sands, silts, muds and lacustrine carbonates. The half graben structural and
sedimentation style is similar to that observed in many modern (Cohen, 1990; Johnson et al,,
1995) and ancient (Lambiase, 1990) lacustrine basins.

Oil and gas bearing strata of the Eocene Lower Green River Formation are largely fluvial-deltaic
in nature. Sandstones were deposited along shorelines, in deltas, and in distributary and fluvial
channels at the shallow margins of the lake. Carbonate units were formed in marginal lacustrine
facies. Along the southern and eastern margins of the Uinta Basin, fluvial-deltaic sediments of
Eocene age represent over one-third of the total stratigraphic section. In the southern Uinta
Basin, oil and gas reservoirs are concentrated along an east-west paleo-shoreline that extends for
a distance of about 60 miles. The southern, up dip portion of the productive area is characterized
by the transition from marginal lacustrine deposits into clayey lower delta plain facies. The
northern boundary of the fairway is characterized by the transition from sandy shoreline deposits
to fine-grained open lacustrine rocks. The open lacustrine facies consist of non-reservoir
organic-rich mudstones and calcareous claystones. The fairway is present across portions of both
Uintah and Duchesne counties, where it extends from the Greater Red Wash field westward to the
Brundage Canyon field. The Greater Red Wash field, discovered in 1950, occupies the
easternmost portion of the fairway in which numerous marginal lacustrine sandstone and
carbonate reservoirs have combined production of over 135 million STBO. The western portion
of the fairway has undergone limited development and is characterized by small, localized oil
fields.

Within the project area, there are two major structural trends observed on the surface, gilsonite
veins and the Duchesne fault zone. The Duchesne fault zone (Fig. 1) is an east-west trending
zone of surface fracturing and faulting (Ray et al., 1956). The zone has been traced for a total
distance of 42 miles and has a width of up to 2 miles. The mapped fault zone is located to the
north of the Monument Butte unit, approximately through Lomax's Boundary Unit. There is little
information published on its character. Nielson et al. (1993) showed that fracturing associated
with the Duchesne fault was prominent in the Duchesne oil field and had important controls on
production of oil from that field.

This project was initiated with the U. S. Department of Energy to improve the characterization of
the sandstone reservoirs. One of the principal questions to be addressed was why the water flood
had worked while conventional wisdom was that it would not. Initially, the depositional origin of
the reservoirs was poorly understood and all the sands were thought to be of fluvial origin.
Correlation of sandstone bodies between adjacent wells was often difficult. Fracturing was not
thought to play a significant role in reservoir heterogeneity in this part of the basin.

Although a few sidewall cores and spot cores had been collected and analyzed, the character of
the reservoir sandstones was essentially unknown. Most wells had been logged and correlations
and interpretation of sedimentary facies was largely based on the gamma ray and porosity logs.
The sandstone reservoirs proved to be discontinuous and correlations between wells were often in
doubt; however, the large number of reservoir units has allowed most wells to be completed for
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production.

In addition, one reservoir unit in particular was difficult to understand. This unit, termed the
Lower Douglas Creek, could reach net sandstone thicknesses of nearly 200 feet, but it tended to
be very discontinuous. In addition, even though it was nearly always oil saturated, production
was not predictable. It was initially decided to evaluate this unit by the collection of a continuous
core and the running of a borehole imaging log. Schlumberger’s Formation MicroScanner™ log
was new at that time and was selected. This is a high-precision electrical resistivity imaging tool
with a total of 192 micro resistivity sensors. The sensors are arranged on four arms and provide
approximately 80% coverage of an 8-inch diameter well. Although this was the principal focus of
the imaging log study, it was later expanded to address the other important reservoirs.

The difficulties in implementation at that time have probably been eliminated; the only real
problem was the availability of the tool. At one time, the tool we used was the only functioning
FMI tool, on-shore North America. However, other procedural problems were later encountered,
including the service company losing the imaging log for one of the wells. We have to
recommend that whenever these logs, or any other logs for that matter, are run, you should
always get a digital copy. These logs are expensive to collect, and all copies should be archived in
a digital format.

Borehole imaging logs coupled with a quantitative interpretation is a very powerful technique for
both exploration and reservoir development applications. The FMI evolved from the dipmeter log
that was traditionally used in structural interpretations. However, their application in analysis of
sedimentary environments is particularly useful (Nielson et al., 1992).

In this project, imaging logs were used to determine sedimentary structures, depositional facies,
and paleo-current directions to evaluate depositional environments and sand body geometry. We
also use these logs to determine the character and orientation of fractures. We have found it more
useful to plot orientation data as dip angle or dip azimuth as a function of depth (Bengtson, 1981;
Nielson et al., 1992) rather than the more traditional dip-arrow plot. We also use the dip versus
azimuth (DVA) cross plot of Bengtson (1981) to help characterize stratigraphic orientation data.
In general, all data used for stratigraphic interpretation will have the structural dip removed,
restoring orientation, as much as possible, to that of the depositional environment.

Core and imaging logs from well Travis 14A-28 proved to be very valuable for calibrating
borehole images with real rock. The section cored was from the Lower Douglas Creek (LDC)
unit that had proved to be frustrating to interpret. The core demonstrated that the unit was
largely made up of turbidites (Lutz et al., 1993), an unusual occurrence for the shoaling margin of
alake. The core is comprised of two packages of planar-laminated fine-grained sandstone that
exhibit various degrees of dewatering and soft-sediment deformation, which are separated by thin
disrupted or massive very fine grained sandstone and siltstone beds (Fig. 2). The planar-laminated
sandstones occur in 15 ft thick packages with an intraclast-rich base and a dewatered top, and are
interpreted as moderate to low-density turbidite channel deposits. One of the packages, from
5632.7 to 5623.5 ft forms a complete Bouma sequence (Bouma, 1962). Both of the
planar-laminated sandstone units are strongly oil-stained. Another interesting aspect of the core
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and image log was that the unit contained numerous fractures. The image log allowed the strike
and dip of these fractures to be mapped. The core demonstrated that the fractures contained oil.

The “D” sandstone is the principal target for water flood in the project area. A discontinuous
channel sandstone, the “D," is only of minor importance. However, the “D," sandstone is thick,
widespread and continuous as shown on the net sandstone isopach map (Fig. 3). Although no
continuous core of the D, Sandstone has been taken, detailed description of the sandstone is
possible from the FMI image logs from two wells. Through identification of sedimentary
structures and bedding contacts on the images, the FMI logs can be used to create a lithologic log
and to interpret depositional facies, just as this information would be obtained from a core
description. In addition, the borehole imaging logs can be used to orient features such as
fractures and bed boundaries and allow the estimation of fracture apertures and sandstone bed
thicknesses.

Petrography of sidewall core plugs from the sandstones reveals the presence of abundant rounded
micrite clasts and micrite-coated quartz and feldspar grains that suggest formation of the grains in
a marginal lacustrine environment and then transportation into the open lake. The overall fine
grain size and lack of strong normal grading preclude deposition as channelized sands. Bed
orientations from the D, reservoir in wells #9-34 and #10-34 interpreted from the FMI logs are
summarized in Fig. 4. The data from the #10-34 shows a bedding orientation of about 80° while
the orientation of beds in the #9-34 is much more scattered. This absence of strong orientation is
probably a function of the high degree of reworking of the sediments.

The orientation and character of fractures from the Greater Monument Butte area was determined
using core from well #14A-28 and FMI logging. A typical example of a fracture imaged in
reservoir units is shown in Fig. 5. In general, fractures are developed in sandstones and are
terminated or decrease in intensity in overlying and underlying shales. Thus, they tend to develop
in the more brittle lithologies and are either not formed or preserved in the more ductile units. In
most cases, there is no offset of bedding associated with the fractures, and they are more
appropriately termed joints. These fractures contribute to horizontal permeability within the
sandstone reservoirs, but have little influence on vertical permeability.

The orientation of fractures determined by interpretation of the FMI log from the five wells that
were part of this project are shown in Fig. 6. These fracture orientations generally correspond
with the F, trend of Verbeek and Grout (1992). The east-northeast strike of the fractures is
similar to the regional east-northeast trend of faults that cut outcrops of the Green River
Formation in the southern part of the Uinta Basin. The strong east-west trend in Monument
Federal #9-34 is more closely parallel to the Duchesne fault zone.

The orientations of all the fractures measured in the imaging logs are shown in Fig. 7. This
diagram illustrates the preponderance of steep fractures. From a statistical standpoint, there is a
low probability of intersecting a steeply dipping fracture with a near vertical well. We therefore
suspect that the sandstone reservoirs, where the measured fractures predominantly occur, are
pervasively fractured.
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The petroleum reservoirs of the lower Green River Formation owe their character to both
sedimentary and structural processes. We have used borehole imaging techniques in combination
with continuous and sidewall cores and interpretation of conventional logs. The aspects
considered in the interpretation of the borehole imaging logs includes fracture character and
orientation and identification of sedimentary features and their orientation. The borehole imaging
logs also allow the identification of thin beds that are candidates for future development in this
part of the Uinta Basin.

From a scientific standpoint, the imaging logs run during this project were highly successful.
However, their high cost and the cost of interpretation resulted in their limited application.
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Figure 2. Summary of core from the Lower Douglas Creek unit from well Travis Federal
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Application of Borehole Imaging Logs to Eolian Reservoir Heterogeneity Studies, with an
example from the Tensleep Sandstone, Wyoming.

Mary Carr and Neil Hurley, Colorado School of Mines, Golden, CO 80401

Eolian reservoirs exhibit significant compartmentalization and directional permeability
caused by the processes taking place during accumulation of sediments within an eolian
system. The contrast in grain packing across erosional bounding surfaces is one of the
primary controls of fluid-flow patterns within eolian reservoirs. Better prediction of the
geometry of flow units bounded by erosional surfaces can be made by reconstructing the
type of bedform that formed the accumulation. Subsurface study of the occurrence and the
frequency of erosional bounding surfaces has been limited by the availability and quality of
core data. However, using borehole images, specifically FMI and FMS logs, the
orientation of stratification can be resolved, and the cross-cutting relationships produced by
erosional bounding surfaces can be identified. Comparison of the stratification orientation
above and below an erosional bounding surface makes it possible to classify the erosional
bounding surface within a process-oriented hierarchy. Using the foreset and bounding
surface orientations gathered from the FMI and FMS log data, and using computer
simulation methods for bedform reconstruction, a bedform that reflects the observed
variations in stratification can be constructed.

An integrated study of FMS logs, FMI logs, and cores from the Tensleep Sandstone in the
Oregon Basin Field, Bighorn Basin, Wyoming indicates that erosional bounding surfaces
can be identified and classified. The FMI and FMS logs also allow delineation of eolian
facies such as interdune accumulations.

Other information sources:
Institute for Energy Resources DOE Web site: ierultral.uwyo.edu
Related articles:

Carr-Crabaugh, M., Hurley, N.F., Carlson, J., 1996, Interpreting eolian reservoir
architecture using borehole images, in Pracht, J.A., Sheriff, R.E., and Perkins, B. F.,
(eds) Stratigraphic Analysis Utilizing Advanced Geophysical Wireline and Borehole
Technology for Petroleum Exploration and Production, GCSSEPM, Seventeenth Annual
Research Conference, p. 39-50.

Carr-Crabaugh, M., Dunn, T.L., 1996, Reservoir heterogeneity as a function of
accumulation and preservation dynamics, Tensleep Sandstone, Bighorn and Wind River
Basins, Wyoming, in Longman, M. W., and Sonnenfeld, M.D., (eds) Paleozoic Systems
of the Rocky Mountain Region, RMSSEPM, p.305-320.
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Figure 1. Illustration of different scales of reservoir heterogeneity in the Tensleep
Sandstone. The largest scale of heterogeneity is defined by the marine dolomitic
units, which subdivide the cross-stratified eolian sandstones. The smaller-scale
heterogeneities are defined by first-, second-, and third-order erosional bounding
surfaces indicated by 1, 2, and 3. Commonly, tightly-packed wind-ripple laminae
overlie the erosional bounding surfaces (Carr-Crabaugh and Dunn, 1996). The
tight packing results in low permeability and inhibits fluid-flow across the
erosional bounding surfaces.
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Figure 2. Map of core and well log locations in North Oregon Basin field study
area. Sections are one mile on a side; quater-sections are delineated.
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Figure 4. Fence diagram illustrating correlation of individual marine dolomitic
units across the Bighorn Basin. Inset map indicates outcrop pattern of Upper
Paleozoic rocks and the location of wells used in diagram. From Carr-Crabaugh
and Dunn (1996).
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- 80 ft.

Figure 5. Idealized Upper Tensleep eolian-marine cycle. Eolian sandstone
accumulation shows a thin, discontinuous interdune accumulation toward the top
(I). The uppermost eolian sands are commonly contorted. The eolian sands are
gradationally overlain by sandy marine dolomites, which are capped by an
erosional surface (E). T1, T2, and T3 correspond to schematic diagrams in Figure
7. From Carr-Crabaugh and Dunn (1996).
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Figure 6. Generalized Pennsylvanian to Early Permian paleogeography during a
sea-level lowstand. Stipple pattern indicates area of eolian development. Arrows
depict paleowind directions (Parrish and Peterson 1988). Box indicates the
Bighorn and Wind River Basin study area. Modified from Kerr and Dott (1988).
Dashed line indicates United States border.
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Time 3

Eolian Preservation |-
caused by Relative [~

Sea Level Rise

Time 2

Dry Eolian System |

with a Rising

@ Eolian preservation occurs as a result of sea-level rise and flooding of the
eolian system, which places the accumulation below the regional base-level of
erosion.

® Sea-level rise and flooding result in regionally disturbed strata immediately below the
super bounding surface.

Local Water Table e

Time 1

Eolian
Accumulation
in a Dry System

Figure 7.

@ The more deeply eroded interdune areas intersect the rising local water table,
producing flat- to wavy-bedded interdune strata that are laterally discontinuous.

@ No water table influence on sediment accumulation

@ Closed interdune areas; dunes climb and sediment accumulates

@ Undulatory nature of the first-order surfaces (1) suggests that variations in the
depth of scour are controlled by variation in dune spacing.

Schematic diagrams illustrating accumulation and preservation

dynamics of the Tensleep Sandstone parallel to transport direction. Times 1, 2,
and 3 correspond to T1, T2, and T3 in Figure 5. Time 1: Accumulation of
sediments in a dry eolian system. The water table is well below the depositional
surface and is not influencing accumulation. Time 2: Relative sea-level rise is
driving up the continental water table, causing it to flood the most deeply scoured
interdune areas. In outcrop, the interdune accumulations are laterally
discontinuous wavy-bedded, heavily-cemented, fine-grained sandstones. Time 3:

Relative sea-level rise results in flooding of the area and preservation of the eolian

cross-stratified units. Contorted laminae (wavy lines) commonly occur in the
upper portions of the eolian sandstone units. Subsequent relative sea-level fall

results in

the formation of an erosional surface capping the marine carbonates.

From Carr-Crabaugh and Dunn (1996).
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Figure 8. Uninterpreted dynamic image from the Gov't Tract 3B #16 FMS log.
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Figure 9. Schematic drawing of internal stratification within the Tensleep
Sandstone illustrating the cross-cutting relationships of the first-, second-, and
third-order erosional bounding surfaces.
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Figure 10. Comparison’of types of erosional bounding surfaces observed in core
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lines are grainflow laminations.
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Figure 12. Portion of the Tensleep bedform reconstructed using the program
developed by Rubin (1987). First-order (1) and second-order (2) bounding
surfaces are labeled. A. The main crestline is oriented along a southeast-
northwest line at 119° and is migrating to the south-southwest. Along the leeface
of the main bedform, superimposed bedforms are migrating to the southeast at
145°. B. Stripping off the surface features allows visualization of the three-
dimensional geometry of the flow-units defined by the erosional bounding
surfaces.
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Figure 13. Portion of the Tensleep bedform reconstructed using the program
developed by Rubin (1987). A. The main crestline is oriented along a south-north
line at 90° and is migrating to the south. B. Stripping off the surface features

allows visualization of the three-dimensional geometry of the flow-units defined
by the erosional bounding surfaces.
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Figure 14. Idealized compound crescentic bedform, Tensleep Sandstone.
Bounding surface and stratification orientations were determined and used in
conjunction with the method of Rubin and Hunter (1983) to determine
orientations of superimposed bedforms. The main bedform is migrating to the
south, and the superimposed bedforms are migrating to the south-southeast along
the arms of the main bedform oriented obliquely to the dominant wind direction.
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Cementation Exponents

Nagent 1984

_ 2 *log(d,)
™= log(d,)
Nagent Resistivity

_ 2*log(D,)
M = " log(d, )

Focke and Mann
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Abstract

The West Welch San Andres Unit is located in the northwest corner of Dawson County,
Texas. Permian age dolomites produce from an average depth of 1463 m (4800 feet). A proposed
CO, injection project required a detailed description of reservoir properties.

Rock typing, by visual description of core and thin section, yielded eight rock types present
in the reservoir interval. Petrographic image analysis yielded a classification of the reservoir rock into
four types. Correlating either scheme to log data met with limited success. Relative permeability data
indicated water-wet and mixed wettability intervals.

Starting with a theoretical model, key variables such as pore geometry, pore surface area, and
flow path length relates to log response. Laboratory and log data provide Carmen Kozeny equation
factors resulting in a continuous permeability profile with rapid changes accounted for continuously.
Changes in wettability determined from logs refine the analysis. The final computed curves guided
the reservoir description process.

The process is limited to wells with sufficient data, and the generated values apply to the well
bore area only and a knowledge of all rock types present is critical. The results are comparable to
core data but is considerably less expensive than coring the same number of wells.

Introduction:

The results presented herein were derived from a partially funded DOE Class 11 project (DE-
FC22-93BC14990). The scope of the project required a geologic description of the reservoir for
numerical simulation to design and implement an economic CO, flood in a low permeability,
heterogeneous reservoir. One of the objectives is to develop methodologies by which other operators
can perform the descriptions in other fields.

The Welch Field is located in the northwest corner of Dawson County, Texas, on the northern
shelf of the Midland Basin (Figure 1). The field produces from dolomite of the Permian age

(Guadalupian) San Andres Formation at an average measured depth of 1463 m (4800 feet). The
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producing interval is approximately 122 m (400 feet) below the top of the formation. The reservoir
section thins to the north toward the paleoshoreline and is overlain by impermeable evaporites and
anhydritic dolomites. Permeability decreases to the east and west. The southern limits of the field are
determined by down dip high water saturations. Current structure (Figure 2) reflects post-depositional
movement of deeper fault blocks. A 3D seismic survey of the field confirms that these faults do not
reach the San Andres interval.

The average porosity for the unit is 9.5%, with a geometric average permeability of 1 md.
Within the project area the average porosity is 12 % and the average permeability is 2.2 md. As of
December 1995, the West Welch Unit has produced 67 MMBO, 11 BCFG and 129 MMBW. Since
water flood operations began in 1960, 254 MMBW have been injected. The West Welch Unit
currently has 340 active producers and 207 active injection wells and covers over 12,000 surface
acres. Current monthly production is 2,837 BO, 518 MCFG, and 22,896 BW. The unit wide average
water cut is 89%. The DOE project area covers 564 acres in the south central portion of the West
Welch Unit. This area alone has produced 7.7 MMBO. The project area currently has 38 producing
wells, 23 injection wells, two observation wells, and one water supply well. Eleven of the wells within
the project area have been cored.

Classification of rock types by visual description of core and thin section yielded eight rock
types present in the reservoir interval. The relative permeability data indicated the reservoir had
various wettabilities. Analysis of samples by petrographic image analysis yielded a classification of
the reservoir into four classes. Comparison of both classification schemes to the log data met with
limited success.

Starting with a theoretical model, key variables were ascertained, such as pore geometry,
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internal surface area of the pores, and the length of the flow path. By relating the primary response
of the logs to the laboratory data, specific factors of the Carmen Kozeny equation can be derived
through independent log measurements.

The result is a continuous permeability profile for the logged section with the rapid small scale
changes accounted for in a continuous manner. Changes in the wettability are determined from the
calibrated log response to refine the analysis. The final computed curve guides the layering process.

The process is limited to wells with sufficient curve data, and the generated data applies to
the well bore area only. A knowledge of all rock types present provides the validation of the analysis.
The results are comparable to core data but remain considerably less expensive than coring the same

number of wells.

Background.

The standard approach is to identify the rock types present and establish the petrophysical
character of each rock type to guide the building of the permeability profile. The initial reservoir
description began with the classification of rock types present by core and thin section examination.
The result was a classification scheme of eight different rock types. This data was constructed on the
arrangement of the grains and pores; however, rock types could not be reliably predicted from the
log response to permit the extrapolation to wells without cores.

Another approach was performed by a consulting firm whereby the reservoir was divided into
three reservoir rock types and one non-reservoir type. The arrangement of the classification is based
on the internal pore structure as determined by petrographic image analysis. Even with the reduction

in rock types, the classification did not permit satisfactory prediction with log response.
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Concurrent with this classification, relative permeability experiments were being conducted
on core samples from the project area. The results of the experiments indicated the formation was
of mixed wettability ranging from water-wet to intermediate oil-wet. The change in wettability would
hamper the accurate prediction of rock type from well logs. In both instances, changes in rock
wettability hindered the identification of the rock types by log response.

The prediction of permeability by porosity alone has been used extensively in reservoir
description but has no basis in theory. The empirical correlation assumes that the interconnected pore
space improves directly with the increase in total pore volume. The relationship has had successes
in sandstone reservoirs but the more complex nature of the carbonate pore structure rarely fits this
relationship. As a result, a single porosity value may have a permeability range covering several
orders of magnitude. The real control of permeability lies in the pore throats between the pores.
Larger pore throats can be measured directly with pore casts and SEM. Capillary pressure
measurements will provide the pore volume connected by pore throats of a effective radius but does
not measure the pore throats directly.

There is no log that measures permeability directly;however, there isalso no laboratory device
that directly measures permeability. In the laboratory, measurements of other parameters are made
on core samples and the Darcy equation is used to calculate the permeability of the sample. Earlier
attempts at determining permeability from logs utilized standard log computations such as water
saturation and clay volume. These values have uncertainties inherent with the computation by the
assumptions used such as ‘m’, ‘n’, and connate water resistivity all used in an empirical relationship
(Archie Equation).

The dominant factors controlling the permeability are the pore throat diameter and the number
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of pore throats connecting a pore. Recent work by Herrick and Kennedy has provided insight on the
nature and controls of the resistivity tool response in formations (Herrick and Kennedy, 1993). Their
work using finite difference modeling of pore systems illustrates the overwhelming effect of the size
of the pore throat when compared to the contribution by the pore body.

Prior to logging, the drilling fluid flushes the moveable oil from the near well bore area. If
the rock has a uniform pore system without dead end pore space, or high aspect ratio, the deep
resistivity and the flushed zone resistivity should plot as a straight line on a log-log plot (Figure 3).
Changes in the pore type and wettability will affect the shape of the line. The technique is in the log
analysis literature using a technique called a Dew Plot (Asquith, 1995).

When the rock is water-wet, the changes in resistivity to residual oil will be greater than when
the rock is oil-wet. The oil-wet rocks will have smaller effective pore throats to the flow of current.
This is caused by the resistive oil lining the pore and pore throats, thereby reducing the diameter of

conductive fluid phase in the pore system.

Theoretical Relationship.

The Carman Kozeny equation (CKE) (1927,1929) characterizes the permeability as a function
of the pore volume, the length of the flow path (t), and the internal surface area (K, Kozeny Factor).
The model represents a bundle of capillary tubes. Once these factors are determined, the permeability

of the rock can be calculated. Because of the expense and difficulty in measuring these factors,

&
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average values are normally assumed. In this paper, log responses have been equated to each of the
factors. Because several independent measurements are used, continuous variations in the pore
structure are accounted for in the computed permeability. The Kozeny Factor (K,) is determined
from the total gamma ray log response. The Tau () is determined from the pad resistivity tool (Rxo0),
and the porosity is determined from the lithology-corrected density log. The comparison of the deep
reading resistivity tool and the poroéity yields information as to the formation wettability. The
selection and use of these particular input curves has been documented in several instances in the
literature (Mohaghegh, Ameri, and Arefi, 1996; Yao and Holditch, 1993). The critical aspect is the
inclusion of the resistivity measurements into the calculations.

The pore geometry description requires accounting for the multiple aspects of pore size, ratio
of pore body to pore throat diameters, roughness of the pore wall, and the degree of interconnection
between the pores. In the CK equation, the Kozeny Factor K, acts as a friction term in the equation
and is related to the internal surface area of the pores and the pore body to pore throat diameters.
Special laboratory measurements can be made to approximate this area. Approximations have also
been made for pore surface area based on the mineralogy of the pore system. The first method is
expensive and difficult to perform. The second method requires that these minerals actnally form the
lining of the pores.

For this project, a means had to be identified that would provide information as to grain size

and the associated roughness of the pore walls. Mineralogically, the reservoir is composed of

&
D e
o Sse oy ?

78



dolomite and anhydrite (approximately 96%) with the rest being silica in the form of quartz silt and
chert, and clays (illite and kaolinite). Application of mineral-specific surface area would be ineffective
due to the high degree of crystal or grain size distribution within the reservoir (<10 microns to > 1000
microns). From SEM examination, the clays present in the formation do not reside within the pore
system and, as such, do little to affect the permeability or water saturation. Monicard (1980) found
acceptable values for surface area could be generated using porosity and permeability values from
analyzed core samples, transformed using a modified CK equation. The equation (2) proposed by
Monicard was used to compute the internal surface area. This equation was applied to the core data
obtained from the model area. The total gamma ray curve was found to have comparable deflections
as the internal surface area curve computed from core analyses (Figure 4). Spectral gamma ray logs
were not available to identify the cause of the radiation; however, the finer crystal sizes equated to
intervals of higher gamma radiation. It is postulated that the finer crystals contain more impurities
retained in the rapid growth of the crystals.

The correlation was improved by normalizing the gamma ray response to the maximum and

minimum deflections within the reservoir interval using equation 3. By restricting the selection of

Gr . GR - CRuy
NORL T GR,. ~ GR

minimum and maximum values to within the reservoir interval, the incorporation of diagenetic
processes outside the reservoir interval was avoided in the normalization process. The maximum and
minimum values were surprisingly similar even though six different logging companies were used

during the period of 1985 to 1994 when the control wells were logged. Maximum values were
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rounded up to the next highest whole number and the minimum values were likewise rounded down.
The normalized value is to be used in the denominator and as such cannot be zero.

The other factors of tortuosity (t) and effective pore throat diameter are parameters in the
determination of permeability. The po.re throats act as a choke of the system restricting the flow
between pores. The tortuosity is the ratio of the totél length of the flow path compared to the actual
distance to reach the pressure sink (producing well). The flow of electric current has been equated
to fluid flow since the early days of reservoir simulation when early simulators were actually large
circuit boards. In non-conductive rocks the flow path of the current coincides with the flow path of
the fluid. The resistance to flow is related to the length of the flow path, therefore logging tools
measuring electrical properties of the formation should provide details of the fluid flow characteristics
if interpreted properly.

The recent work by Herrick and Kennedy (1993) has shown that the effective diameter of the
pore throat has a controlling effect on the electrical properties of the rocks as well. The result is that
the resistance to current flow is the combination of the interconnected pore throats diameters and the
length of the conductive fluid path.

This is not the first time that attempts have been made to determine Tau from resistivity
measurements. Wyllie and Rose (1950), Cornell and Katz (1953) and Winsauer et. al (1952) related
the porosity and formation resistivity factor (Ro/Rw) to Tau. Their efforts are summarized in Salem
(1993). The bulk of the work done by these investigators was performed on sandstones and water-
wet systems. Electrical logging tools of this period did not have the resolution of modern tools which

may have attributed to the lack of attention to this work.
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Although the information is contained within the resistivity measurements, developing an

accurate interpretation of the values has been elusive. Nugent (1984) had developed a relationship

e 2 Log(94.puec)

....... Nugent Equation
LOg(¢Toml)

to generate the tortuosity of a formation from the comparison of the acoustic porosity to the total
porosity. The premise is the acoustic porosity represents the volume of interconnected porosity.
When compared to the total porosity of the system, the Nugent Equation provides an estimation of
the length of the flow path. The assumption is that the acoustic porosity is the actual interconnected
porosity. Fractures and oversized pores are not readily detected by acoustic logging and may mislead
the interpretation.

A porosity type calculation can be made from the resistivity measurements if the formation

water resistivity and the cementation exponent from the Archie relation are known. During this study

an assumed value of 2 was used for the ‘m’ in Equation 4. The calculated porosity value represents
the volume of interconnected conductive fluid within the measurement area. The presence of
hydrocarbons is not included in the porosity determination because they do not conduct electricity.
By substituting the conductivity-derived porosity into Nugent’s Equation for ‘m’, a ratio of the flow

path to the total porosity is generated. Smaller values of the resistivity porosity indicate that there
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is a shorter flow path for the current to flow through. The result is that the higher values output from
this equation (Nugent R) are indicative of higher permeabilities. A fair approximation of the
permeability could be generated simply by rescaling the Nugent R values to the logarithm of the core
permeability (Figure 5). In the West Welch reservoir, the Nugent R was rescaled from 1.5 to 3.5 to
the -2 to 2 scale of the logarithm of permeability.

What is also significant is the distribution of the fluids within the pore system. In water-wet
systems the conductive fluid is in contact with the rock. Capillary forces in smaller pore throats
create oil droplet snapoff, trapping oil in the pore body while the water remains in a continuous phase
through the system. Oil wet rocks reverse the distribution of the fluids with the oil now in contact
with the pore wall. The conducting fluid will have a shorter path through the pore body, but the
effective pore throat diameter is reduced. To compensate for the differences in log response, the
wettability of the rock must be determined prior to the evaluation of the log-derived permeability.

Laboratory data verified the wettability nature of the rocks. Wettability was gleaned from the
relative permeability experiments. By cross-plotting various data with the respective samples, the
combination of the resistivity curve and the porosity curve illustrates the intervals of a change in
wettability. In water-wet intervals, the pore volume decreases the resistivity increases; but in the
mixed wettability samples, there was higher resistivity than samples of equal porosity in water wet
samples. The comparison of the deep resistivity and the Rxo readings also displayed a distinct scatter
from the water-wet relationship.

Results of Data.
Factors for the CK equation can now be determined on a sample basis equal to that of the log

data (in this instance one half foot increments). When substituted into the equation, the CK equation
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recorded the closest to the mixed wettability and high aspect ratio pore systems. Other intervals did

100 ¢3
(GRyor)® (NugentR) (1-)

k=

not respond as well. Upon further examination these intervals were composed of smoother pores and
more strongly water-wet pores. As described before, a rescale of the Nugent R curve fit most of the
intervals which the CK equation did not match as well. There were also intervals that did not match
well with either method. This third rock type was composed of what is commonly referred to as
sucrosic dolomite, composed of large smooth crystals of dolomite. These intervals responded well
to a single porosity- permeability transform. These intervals were identified by having a normalized
gamma ray response of less than 0.25 (< 25% of the deflection range).

The combination of rock properties by log character and use of the transforms for the specific
rock types enabled the calculation of a continuous permeability profile for the reservoir interval. This
profile correlated well with measurements of whole core values (Figure 6). The additional advantage
is that the rapid changes not reported in the core analyses become apparent in the log-generated
profile. Unless specifically arranged, routine core analysis does have a sampling bias. The bias is
cause by the laboratory personnel selecting samples from the core that appear to have a reasonable
chance of yielding good data. Thin shales or anhydrite beds will often not be sampled. These
omissions become significant when developing a reservoir model for simulation. Many thin shales
have lateral continuity between wells and are vertical flow barriers.

The identified lower-permeability intervals were used to help define the layers within the
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reservoir. Because the log response is allowing for calculation of a sample-by-sample basis, lumping
of petrophysical characteristics by zone is avoided so that deviation errors can be avoided or
minimized.

Limiting Factors.

As with any reservoir description methodology, the limiting factors should be abundantly clear
before applying the process. Even as detailed as the permeability profile is, it directly applies only
to the near well bore area. Because logs record values from rock volumes different from those of
core analysis, an exact match of the two profiles would only be expected in a uniform homogeneous
reservoir. The match between the two profiles is as close as the comparison of plug core analysis
to whole core analysis (Figure 7).

The use of multiple log curves does improve the computed permeabilities, but the procedure
is limited to wells with sufficient log data: total gamma ray, deep resistivity, flushed zone resistivity,
and bulk density (with a photoelectric and/or acoustic curve for lithology correction).

The final limiting factor is the knowledge of the rock types present; therefore, some core data
is required. The larger the sample population, the greater the accuracy of the prediction. From the
four control wells examined, only one interval in one well failed to respond to the process. This
interval was composed of a rock type not observed in the other three wells. Work is in progress to
identify this rock type for future work.

Potential. |

The potential of this process is that reliable permeability values can be generated from less

expensive common log data for improved reservoir characterization. Although some core is required

to calibrate the log response, less arbitrary adjustments and assumptions are needed to compute
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values. The results can be more representative of reservoir permeability than core values due to a
larger volume of the reservoir analyzed.
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Advanced Log Analysis for Delaware Reservoirs

Class Project Workshop
Midland, Texas
November 13, 1997

The logging technique presented at this workshop, was developed as a component of Strata
Production Company’s Class Il Project in partnership with the United States Department of Energy.
The title of the this Class III Project is “Advanced Oil Recovery Technologies for Improved Recovery
From Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico”.

Early in the analysis of the sidewall core data, the full core data, and the digitized logs from the Nash
Draw Delaware Project, it became evident that an accurate method of predicting oil productive zones
was necessary. To compare results from old wells with new wells, the method was required to be
useable with logs from existing wells that include gamma ray, neutron, density and resistivity logs.
By following the sidewall core methodology used to identify pay zones, a method was devised which
identified pay zones using a core calibrated log analysis. This analysis requires the following steps:

1.

Obtain an accurate history of the resistivity of the mud filtrate (R ) while drilling the pay
zones. Obtain accurate R, values for the mud used while logging. Correct the R_ values
to bottom hole temperature using Arp's Equation:

Rmfcon' = Rmf@75°F X (75 o+7)/ (Tnnb+7+((depth/100 ﬁ) X Tgradlent per 100 ft))

Correct porosity values using the cross-plot vs. core porosity transforms. This transform is
obtained from a regression analysis of the core porosity data versus the average of the
neutron-density log porosity values. A correction factor can be applied to further refine the
porosity values to better match core values and individual rock types.

O =(Dspc X 0.7867) +3.2012

Calculate a residual oil saturation (S,,) using the R ¢, and ¢cm values in the equation:

Sxo= 1'((Fr X Rmfcon )/R-xoMSFL)‘S Fr=0'8 1/ d)coﬂ'2

Calculate a S,, value for each interval in the digitized logs, and perform a sorting to identify
intervals with S,, values greater than the residual oil values found in the cores. Since intervals
with low or no residual oil saturation have a low probability of being oil productive and
intervals with high residual oil saturations have a high probability of being oil productive, this
is the first sorting step in the process of productive zone determination. These intervals are
potential productive zones and can be processed with other criteria to arrive at an accurate
determination of the productive zones.
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5. Because of the thin-bed nature of the Delaware Formation, the Deep Resistivity Log is
influenced by the zones on either side of a productive zone; this averaging of approximately
three feet of zone and invasion leads to low Rt measurements. Low Rt values yield high S,
calculations and pessimistic interpretations of potential productive zones. To compensate for
the averaging of thinly bedded reservoirs by the deep resistivity tool, an adjustment factor is
used to multiply the observed Rt value by this correction factor to obtain a corrected Rt
value (Rt,,,). This correction factor can be obtained by two methods: (1) by using Tornado
Charts for thin-bed reservoirs, or (2) if a known productive zone is available and the S, is
known, it can be used to calibrate the calculations by finding the correction factor that yields
Sw calculations that match actual production and test data. The most often used correction
factor at Nash Draw Pool is 1.1, when this correction is multiplied by the Rt value, this yields
a Rt value 10% higher than measured. By applying a S, cutoff of less than 60% to the
prospective intervals, only intervals that have favorable relative permeability values will be
included in the sample of potentially productive zones.

6.  To eliminate shaley sands and shale zones, sort out intervals that have gamma ray (GR) values
greater than 70 API units. Shaley sands have low permeabilities and are seldom productive.

7. Zones with a corrected porosity value of 11% or greater have sufficient permeability to be
productive. Sort data to eliminate zones with low permeability.

8.  UsingS,, d)OORR, and other basic reservoir parameters, an original-oil-in-place (OOIP) value
can be calculated for each interval on the digitized log. The OOIP value cutoff is a value
greater than 300 bbl/ac-ft.

9.  Use permeability-porosity transforms to estimate the permeability for a calculated porosity
in each interval.

After calculating values for each interval and them sorting out the productive intervals, a more
accurate determination of pay zones can be obtained. By applying relative permeability data to each
interval the productivity of oil and water can be calculated. This information coupled with fracture
geometry data will lead to a better completions and reduced expenditures on nonproductive zones.

This core calibrated log analysis technique yield’s comparable results to the Magnetic Resonance
Logs and may sometimes have higher resolution than the MR Log. Zone less than one foot in
thickness can be evaluated with either technique and the core calibrated system can have resolutions
approaching one-half foot.

Should additional information concerning this technique be required, please contact Bruce Stubbs at
505-624-2800 or pecos@baervan.nmt.edu. A web page, with updated project information, can be
viewed on the Petroleum Recovery Research  Center’s web  site  at
http://baervan.nmt.edu/prrc/homepage.html and then look under the REACT Projects to locate the
Nash Draw Project.
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Characterization of Spraberry Shaly Sands Using Core and Log
Data

Paul McDonald, Pioneer Natural Resources

The Spraberry Trend area in West Texas encompasses an areal extent of over 2500 square miles
and is currently producing from over 8000 wells. Despite the Spraberry’s vast size, the number of
modern open hole log suites and cores is relatively small. During the first phase of Pioneer’s Class
IIT Oil Research Project, the project team has improved reservoir characterization by developing a
core based rock model for identification of key Spraberry pay zones. This rock model has been
extended to include identification of pay using conventional cased hole GR-Neutron logs which are
more commonly run when drilling a Spraberry well.

Since all aspects of Spraberry production are dominated by natural fractures, it was imperative to
improve the characterization of the fracture network. This characterization was aided by wellbore
image logs run in both a vertical and horizontal well. These logs were then correlated directly to
core for verification of the existence and orientation of natural fractures in the subsurface.
Although fracture orientation from the core agreed well with the image logs, actual one to one
correlation of natural fractures was quite ambiguous.

Lastly the project team has just recently run NMR core analysis in order to calibrate NMR type logs

run through the Spraberry. It was anticipated that these logs may improve both porosity and target
saturation values for the thin, shaly, sand intervals of the Spraberry.
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PfEFFER: THE INTEGRATED ANALYSIS OF WIRELINE LOGS AND
RESERVOIR DATA IN A SPREADSHEET ENVIRONMENT

John H. Doveton , Willard J. Guy, W.Lynn Watney , Geoffrey C. Bohling, and
Saibal Bhattacharya
Kansas Geological Survey, Lawrence, Kansas

INTRODUCTION

As computers evolved from large mainframes to minicomputers to PC
microcomputers, so too have the goals of log analysis, as well as the
understanding of petrophysical relationships. In the early days of computer
processing of logs, exploration for oil and gas was a major activity focused on
the location of potential pay zones and the computation of reservoir volumetrics.
Today, the emphasis has changed to reservoir management in the more efficient
exploitation of existing fields and the recognition of potential by-passed oil and
gas. Problems facing producers today also include recognition of
underproduced reservoirs, evaluation of fields that have commingled production
that limits traditional engineering analysis, and effective utilization of old logs in
mature o0il and gas fields that challenge conventional log analysis. Increasingly,
this task calls on more sophisticated concepts of petroleum geology and their
engineering implications than was generally the case in exploration and initial
exploitation. In the past, once a reservoir was characterized, this model was
tested directly in the field through implementation of a reservoir management
option. Today, the option exists to apply a quantitative reservoir characterization
to low cost or freeware desktop fluid flow reservoir simulators such as DOE's
BOAST3. Testing production scenarios using a simulator helps to forecast the
success or failure of a reservoir management option and in turn limits operator
risk. This integration ultimately helps to refine strategies to improve oil and gas
recovery. Also, modification of reservoir characterization may also be warranted
through iterative modeling. An easy to use, cost-effective, and efficient link
between reservoir characterization and reservoir simulation has the potential to
lower risks and help target optimal strategies for improved oil and gas recovery.

At the same time, the responsibility for log analysis has increasingly
shifted from petrophysical specialists to lay geologists or engineers with broad
"team" assignments in the major companies. In smaller companies and among
independents, log analysis is also only one of many tasks that an employee will
be charged to work on. Managers in large companies are showing reluctance to
spend large sums of money on hardware or software, particularly when their
employees are challenged both to find the time to master overly complex
software and to resolve conflicts between hardware and software upgrades.
Smaller companies and independents have neither the patience nor the money to
expend on such problems. By contrast, spreadsheet software is cheap and runs
on cheap machines; most potential users are well advanced on the learning
curve from their exposure to spreadsheets in high school and college.
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Spreadsheet skills already acquired can be used to extend the capabilities of
P{fEFFER to new analyses at the wish of the practiced users. Many secretaries
have been trained in spreadsheet use and could be trained very easily for log
data entry tasks. In summary, the spreadsheet medium provides an
environment that can be used readily and productively by a variety of
employees.

PfEFFER DESIGN AND OPERATION

PfEFFER (Petrofacies Evaluation of Formations For Engineering
Reservoirs ) is a Visual Basic “add-in” computer program that can be operated
from the Microsoft spreadsheet program EXCEL for the petrofacies analysis and
mapping of hydrocarbon reservoirs. The spreadsheet style of computer
programming is a powerful means to evaluate and compare potential production
zones as a cost-effective, practical tool in the real-time characterization and
analysis of both simple and complex reservoirs. The equations and models of
PfEFFER are firmly grounded in the models and equations of classic log analysis.
The Pickett plot plays a central role in the methodology as a graphical space to
map all of these relationships. Spreadsheet database and graphics features allow
both rapid interaction and comparative evaluation of multiple interpretations or
best case/worst case extremes. The spreadsheet does not itself provide THE
answer but allows the user to explore a variety of alternatives very easily. In the
case of a straightforward analysis, the user may be satisfied with a single
solution. In other cases, the user will be free to generate as many alternative
scenarios or best and worst cases as desired. Errors on the logging tool
measurements can be accommodated by incorporating simulated error from a
spreadsheet random number generator in a series of multiple runs. Sensitivity
analysis can also be applied to equation parameters to evaluate their influence on
reservoir calculations. In addition, multiple wells are also easily handled
collectively, so that the program is used to prepare maps and cross-sections of
analysis parameters across hydrocarbon fields. Case studies of petrofacies
analysis have been developed for a variety of fields using data supplied by a
consortium of supporting companies.

The goals of PfEFFER include the resolution of reservoir parameters that
control performance; to characterize subtle reservoir properties important in
understanding and modeling hydrocarbon pore volume and fluid flow; the
expeditious recognition of bypassed, subtle, and complex oil and gas reservoirs;
the systematic differentiation of commingled reservoirs as an aid in reservoir
management options to improve recovery; assistance in integrating large
amounts of geological and engineering information to improve reservoir
modeling and to define appropriate recovery technologies; and the provision of
practical tools to assist the geoscientist, engineer, and petroleum operator in
making their tasks more efficient and effective.
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An electronic spreadsheet program typically organizes its files as a set of
worksheets contained within a workbook. For the purposes of log analysis, a
useful convention is to equate a workbook with a well, and then stratigraphic or
reservoir subdivisions can be allocated to separate worksheets within the well
workbook. An oil or gas field would then be represented by a group of
workbooks, each matched with a separate well. If an additional workbook is
assigned to the field, it can be used to capture all the characteristics associated
with the wells and their reservoir subdivisions. Cells in the field workbook can
be linked directly with cells in the sheets of the well workbooks. By this process,
the field workbook contains all the current log information on the field and will
automatically revise its contents if changes are made in any of the well sheets.
This capability has enormous advantages in the improvement of log analysis
procedures and the presentation of field-wide results. Estimations of log analysis
parameters can be made easily on a multi-well basis, rather than a linear
sequence with consequent increase in consistency and decrease in uncertainty.
Graphic mapping of well data highlights problem wells that can be checked
immediately by entering their workbooks. Corrections in the well workbooks
will then be carried forward automatically for incorporation in the revised maps.
Used in this way, the mapping process becomes a part of the log analysis
through the interactive comparison of results from neighboring wells, rather than
the consideration of each well in isolation.

An additional cross-section capability allows panels to be constructed of
well variability across a field in the dimension of depth. Log variables or
reservoir attributes are color-coded as spreadsheet columns and hung on a user-
selected datum. The cross-section panel provides an immediate perspective on
reservoir connectivity and conformance, and provides a useful medium for flow-
unit assignation. The panel also provides a means to integrate conventional log
analysis with a conceptual geological model such as a sequence stratigraphic
interpretation of a reservoir. This direct link between log analysis and spatial
distribution makes it possible to iterate to an optimal solution of petrophysical
and geological constructs ensuring a more constrained and accurate reservoir
model.

Reservoir simulation requires careful reservoir characterization,
acquisition and organization of reservoir parameters, and grid design. PFEFFER
assists in this procedure by providing tools to convert well coordinates to those
used by the simulator, establish the plot file for each layer and each parameter,
design grid spacing, generate the grids, and locate the wells in the grid domain
for ease in editing and establishing the simulation input file.

The ability to move rapidly between wells and reservoir units therefore
makes it possible to run a “mosaic” style of log analysis rather than a
conventional linear approach. Not so long ago, log analysis was a highly labor-
intensive task in which much of the analyst’s time was spent in calculation rather
than in interpretation. Procedures were generally organized as a linear sequence
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of steps, so that results could be obtained efficiently and in a reasonable time. By
contrast, the web of links between well log files within a field allows the analyst
to choose to follow one of many possible pathways through a mosaic of steps
that appears best suited to the problem at hand.

In summary, PfEFFER was developed for a number of reasons:

(1) To provide cost-effective log analysis software as a Visual Basic add-in that
could be run on a PC using EXCEL, a spreadsheet program that is used
widely throughout the energy industry;

(2) To allow data to be accessed easily, either from digital LAS files or from
manual input;

(3)To use the numerical processing and graphics capabilities of the spreadsheet
medium to make classical log analysis calculations while simultaneously
displaying crossplots for pattern recognition;

(4) To augment the traditional log analysis methods with techniques that
incorporate estimations of pore size, permeability, and mineralogy in
extensions of the Pickett plot (the “Super Pickett plot”);

(5) To design the program as a tool to improve the use of log analysis in
characterizing reservoirs, detecting heterogeneities, and deciphering subtle
pay zones;

(6) To provide a mapping capability, so that spatial variations in reservoir
properties could be mapped between wells as 2-D maps or 3-D surfaces;.;

(7) To provide a cross-section tool that displays spreadsheet information, to aid
in evaluating reservoir correlation, continuity, conformance, and flow-unit
assignment;

(8) To emphasize user-friendliness so that the log analyst, geologist, or reservoir
engineer who is a casual computer user can rapidly become a proficient user;

(9) To provide a design base for PEEFFER-Pro, that includes linkage to DOE's
BOAST Il reservoir simulator, a simple GIS capability, and the generation of
3-D "pseudo-seismic" volumes.

Software development was undertaken with the financial, data, and beta
testing support of BDM-Oklahoma, the Kansas Technology Enterprise
Corporation (KTEC), independent and twelve oil and gas companies who
operate in Kansas. The first version of the program, PfEFFER 1.0 was completed
in December, 1995 and PfEFFER 1.1 is now on sale from the KGS as both PC and
Macintosh software. The product has already been extremely well received by
industry clients and is marketed through World Wide Web page. Current
requirements of this software include: IBM-compatible personal computers (386
or better) with at least 4 megabytes of RAM, a hard disk, a graphics display
compatible with Microsoft Windows version 3.1 or later, MS-DOS version 3.1 or
later, Microsoft Windows version 3.1 or later in standard or enhanced mode, and
mouse. Power Macintosh requires at least 4 megabytes of RAM, hard disk,
Macintosh System 7.0 or later in order to run the program efficiently. All
PfEFFER versions are in Visual Basic code using syntax included with EXCEL
version 5.0c for the PfEFFER1 series and EXCEL 97 for the PfEFFER2 series.
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SOURCES OF INFORMATION FOR PfEFFER

Demonstration version of PFEFFER software is available at North Midcontinent
PTTC office located at Kurata Thermodynamics Laboratory on Campus West (see
map). North Midcontinent PTTC office mailing address is C/O Energy Research
Center, University of Kansas, 1930 Constant Avenue, Lawrence, Kansas 66047-
3724, Ph: (785) 864-7398, Fax: (785) 864-7399. Home page web address for the
North Midcontinent PTTC office is

http:/ /crude 2 kgs.ukans.edu/ERC/pttcHome.html.

Home page web address for Energy Research Center is

http:/ /crude2 kgs.ukans.edu/ERC/index.html.

The software can be purchased at the Publication Sales office at the Kansas
Geological Survey, University of Kansas, 1930 Constant Ave., Lawrence, KS
66047-3726 (see map), phone 785-864-3965, fax 785-864-5317,

http:/ /www kgs.ukans.edu/. PfEFFER's home page web address is

http:/ /crude2 kgs.ukans.edu/PRS/software/pfefferl.html and includes an
order form located at http://crude

2. kgs.ukans.edu/PRS/software/orderForm.gif. An additional description of
PfEFFER is included in the Survey's online catalog at the web address
http:/ /crude2 kgs.ukans.edu/Datasale/catalog97 / software.html

Direct inquiries about PfEFFER can be requested via e-mail at
PfEFFER@kgs.ukans.edu.

PUBLICATIONS

Doveton, J.H., Guy, W.J., Watney, W. L., Bohling, G.C., Ullah, S., and Adkins-Heljeson,
D., 1996, Log analysis of petrofacies and flow-units with
microcomputer spreadsheet software: 1995 AAPG Mid-Continent
Meeting. Transactions, p.224-233.

Doveton, J.H., Guy, W.J., Watney, W.L., Bohling, G.C., Ullah, S., Adkins-Heljeson, D.,
1995, PfEFFER 1.0 manual: Kansas Geological Survey, Open-file
Report #95-29, 117 p.

Doveton, John H., Watney, W. Lynn and Guy, Willard J., 1997, Petrofacies Analysis -
the petrophysical tool for geologic/engineering reservoir
characterization : Fourth International Reservoir Characterization
Conference Proceedings, p. 99-114.

Doveton, John H., Guy, Willard J., and Watney, W. Lynn, 1997, PfEFFER - Log

Analysis spreadsheet solutions for reservoir engineering and petroleum
geology: Proceedings of the 12th TORP Conference, p. 85 - 90.
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TIMEBLINE | ——1970—1980———1990——>
GOALS ? EXPLORATION “ EXPLOITATION
TASKS VOLUMETRICS PRODUCTIVITY
MACHINIES MAINFRAMES MINIS MICROS
MODRE BATCH  INTERACTIVE SPREADSHEET
LOG USER SPECIALIST GENERALIST

Schematic history of changes in oil and gas industry objectives
and concurrent styles in computer hardware and software.

143




[Hugoten *1- 3% Long _C-SW-SE oSS kel Co., Kansas:
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PfEFFER: The spreadsheet environment
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SHELL ROBBINS #1 32-30S-16W KIOWA COUNTY, KANSAS
MISS "CHAT"
PARAMETERS ZN DEPTH RO MA swW
X 1 2857 0.32 4.02 0.43
Y 2 2863 0.36 3.79 0.47
A 1 3 2873 0.22 4.37 0.43
M 2.36 4 2883 0.42 3.62 0.49
4
RW SHELL ROBBINS #1 32-30S5-16W KIOWA COUNTY, KANSAS
c;lllIPﬂI;I sw=50 sw=20
A — ey \
FTOIL > ~ MISS "CHAT"
KB N Depth=2857-2883
P sw=100 \gqg LARY | HRESSURE, NRsi. X=
g 501100 ™ s00 AN 1doo Y=
~ "
> \Q < N :\ & ™ 3_12 6
N m=2.3
by ™
g \\ \\L \\.L . N 2
S N ~ RW=0.03
"~
My
N |
0.1 1 —
RESISTIVITY -
£ -
0 50 100 ]
Sw B
I I i I !

PfEFFER: Reconciliation of logs with capillary pressure measurements
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9.38751] 2.77044 24|
$.44747| 2.79072 07|
10.1186| 2.82256 99|
9.83568| 2.84619 56|
9.44374, 2.85837 U Y I UTUD IO UL IE365
9.11059| 2.86139 0.82265| 0.08189%| 0.08546
$.54774] 2.85527 0.78189! 0.05486| 0.16325
9.40877| 2.82639 0.65592| 0.13725| 0.20683
8.79666| 2.80605 0.58267{ 0.24432] 0.17301
8.572983| 2.78747 0.50569] 0.31013] 0.18418

PfEFFER: Compositional analysis from logs
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